Search results for "particle tracking detectors"
showing 10 items of 27 documents
Update on the TowerJazz CMOS DMAPS development for the ATLAS ITk
2019
The upgrade of the ATLAS tracking detector for the High-Luminosity Large Hadron Collider at CERN requires the development of novel radiation hard silicon sensor technologies. For the de- velopment of depleted CMOS sensors for ATLAS we combined small electrodes with minimal capacitance and advanced processing for fully depleted active sensor volume to achieve radiation hard CMOS sensors in line with ATLAS ITk specifications. Based on initial studies on the prototype sensor “TowerJazz Investigator” we have now developed, produced and tested a first full-size depleted CMOS sensor based on the 180nm TowerJazz imag- ing process, the so-called “MALTA” sensor. The sensor combines special low-noise…
Design and characterization of the SiPM tracking system of NEXT-DEMO, a demonstrator prototype of the NEXT-100 experiment
2013
NEXT-100 experiment aims at searching the neutrinoless double-beta decay of the Xe-136 isotope using a TPC filled with a 100 kg of high-pressure gaseous xenon, with 90% isotopic enrichment. The experiment will take place at the Laboratorio Subterraneo de Canfranc (LSC), Spain. NEXT-100 uses electroluminescence (EL) technology for energy measurement with a resolution better than 1% FWHM. The gaseous xenon in the TPC additionally allows the tracks of the two beta particles to be recorded, which are expected to have a length of up to 30 cm at 10 bar pressure. The ability to record the topological signature of the beta beta 0 nu events provides a powerful background rejection factor for the bet…
Description and commissioning of NEXT-MM prototype: first results from operation in a Xenon-Trimethylamine gas mixture
2014
[EN] A technical description of NEXT-MM and its commissioning and first performance is reported. Having an active volume of ∼35 cm drift × 28 cm diameter, it constitutes the largest Micromegas-read TPC operated in Xenon ever constructed, made by a sectorial arrangement of the 4 largest single wafers manufactured with the Microbulk technique to date. It is equipped with a suitably pixelized readout and with a sufficiently large sensitive volume (∼23 l) so as to contain long (∼20 cm) electron tracks. First results obtained at 1 bar for Xenon and Trymethylamine (Xe-(2%)TMA) mixture are presented. The TPC can accurately reconstruct extended background tracks. An encouraging fu…
SiPMs coated with TPB: coating protocol and characterization for NEXT
2012
[EN] Silicon photomultipliers (SiPM) are the photon detectors chosen for the tracking readout in NEXT, a neutrinoless \bb decay experiment which uses a high pressure gaseous xenon time projection chamber (TPC). The reconstruction of event track and topology in this gaseous detector is a key handle for background rejection. Among the commercially available sensors that can be used for tracking, SiPMs offer important advantages, mainly high gain, ruggedness, cost-effectiveness and radio-purity. Their main drawback, however, is their non sensitivity in the emission spectrum of the xenon scintillation (peak at 175 nm). This is overcome by coating these sensors with the organic wavelength shifte…
Radiation hard monolithic CMOS sensors with small electrodes for High Luminosity LHC
2019
Abstract The upgrade of the tracking detectors for the High Luminosity-LHC (HL-LHC) requires the development of novel radiation hard silicon sensors. The development of Depleted Monolithic Active Pixel Sensors targets the replacement of hybrid pixel detectors with radiation hard monolithic CMOS sensors. We designed, manufactured and tested radiation hard monolithic CMOS sensors in the TowerJazz 180 nm CMOS imaging technology with small electrodes pixel designs. These designs can achieve pixel pitches well below current hybrid pixel sensors (typically 50 × 50 μ m ) for improved spatial resolution. Monolithic sensors in our design allow to reduce multiple scattering by thinning to a total si…
Studies for low mass, large area monolithic silicon pixel detector modules using the MALTA CMOS pixel chip
2021
Abstract The MALTA monolithic silicon pixel sensors have been used to study dicing and thinning of monolithic silicon pixel detectors for large area and low mass modules. Dicing as close as possible to the active circuitry will allow to build modules with very narrow inactive regions between the sensors. Inactive edge regions of less than 5 μ m to the electronic circuitry could be achieved for 100 μ m thick sensors. The MALTA chip (Cardella et al., 2019) also offers the possibility to transfer data and power directly from chip to chip. Tests have been carried out connecting two MALTA chips directly using ultrasonic wedge wire bonding. Results from lab tests show that the data accumulated in…
Forward tracking at the next e+ e- collider part II: Experimental challenges and detector design
2013
Published under the terms of the Creative Commons Attribution 3.0 License.
The beam and detector of the NA62 experiment at CERN
2017
NA62 is a fixed-target experiment at the CERN SPS dedicated to measurements of rare kaon decays. Such measurements, like the branching fraction of the $K^{+} \rightarrow \pi^{+} \nu \bar\nu$ decay, have the potential to bring significant insights into new physics processes when comparison is made with precise theoretical predictions. For this purpose, innovative techniques have been developed, in particular, in the domain of low-mass tracking devices. Detector construction spanned several years from 2009 to 2014. The collaboration started detector commissioning in 2014 and will collect data until the end of 2018. The beam line and detector components are described together with their early …
Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array
2013
NEXT-DEMO is a high-pressure xenon gas TPC which acts as a technological test-bed and demonstrator for the NEXT-100 neutrinoless double beta decay experiment. In its current configuration the apparatus fully implements the NEXT-100 design concept. This is an asymmetric TPC, with an energy plane made of photomultipliers and a tracking plane made of silicon photomultipliers (SiPM) coated with TPB. The detector in this new configuration has been used to reconstruct the characteristic signature of electrons in dense gas, demonstrating the ability to identify the MIP and "blob" regions. Moreover, the SiPM tracking plane allows for the definition of a large fiducial region in which an excellent e…
Photon reconstruction in the ATLAS Inner Detector and Liquid Argon Barrel Calorimeter at the 2004 Combined Test Beam
2011
The reconstruction of photons in the ATLAS detector is studied with data taken during the 2004 Combined Test Beam, where a full slice of the ATLAS detector was exposed to beams of particles of known energy at the CERN SPS. The results presented show significant differences in the longitudinal development of the electromagnetic shower between converted and unconverted photons as well as in the total measured energy. The potential to use the reconstructed converted photons as a means to precisely map the material of the tracker in front of the electromagnetic calorimeter is also considered. All results obtained are compared with a detailed Monte-Carlo simulation of the test-beam setup which i…